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Abstract-Using a specially chosen velocity profile, the double integral method is used to derive an easily 
applied analytical result for the location of the laminar separation point. Predictions from this result are 
compared lie the accepted separation point locations for many different adverse pressure gradients with 
very good agreement. An effective velocity profile across the boundary layer was developed and was found 
to compare well to an exact solution and to experimental data in separated and near separated flows. It 
also provid.es an explanation for the better performance of the double integral method compared to the 

standard integral method. 

INTRODUCTION 

The basic idea for the double integral method was put 
forth by Volkov [ 11. Since then it has been applied to 
many different types of problems, namely, conduction 
in solids by Volkov and Li Orlov [2], and by Chung 
and Yeh [3], prediction of skin friction and heat trans- 
fer with transpiration, Zien, [4], [5], transient forced 
convection and aerodynamic heating, Sucec [6], and 
to phase change problems, El-Genk and Cronenberg 

[71. 
In the present work, the focus is on the application 

of the double integral method to the prediction of 
the location of the laminar separation point and the 
velocity profile across a boundary layer flow. 

The Von Karman type, single parameter, integral 
method gave the first practical procedure for cal- 
culation of laminar boundary layers, but gives poor 
predictions when used on the problem of separation. 
As Curle, [8], points out, the Karman-Pohlhausen 
procedure is 29% in error for the separation location 
for the linearly retarded flow when a polynomial using 
terms up through Y4 is used as the velocity profile. A 
recent integral method by Thomas and Amminger, 
[9], has an error of 10% in the vicinity of separation 
when using their recommended approximation for 
adverse pressure gradients. The more complicated 
multiparameter integral method of Abbott and 
Bethel, [lo], yields results which compare well to com- 
puter solution calculations of separation location. 
Separation predictions by series solution, and the 
associated proble:ms, are typified by the work of 
Howarth [l l] whle Smith and Clutter, [12], provide 
finite difference computer solutions for separation pre- 
diction. Curle and Skan [13], take the exact solution 
form for two asymptotically large unfavorable pres- 
sure gradients and then determine the optimum value 
of a constant in the solution so as to minimize the 

difference between the separation point predicted by 
this form and the actual value of the separation point 
for a number of different free stream velocities, u,(x), 
which lead to separation. The final result of this “fit- 
ting” procedure is what is usually referred to as Strat- 
ford’s result (Curle [S]). 

The present work uses a velocity profile, specifically 
developed for the separation point, in the double inte- 
gral method to easily and accurately predict sep- 
aration location for arbitrary, specified u,(x). 

ANALYSIS 

Steady, laminar, constant property, planar two 
dimensional (2D) boundary layer flow with free 
stream velocity variation, u,(x), will be considered 
here. The x momentum theorem is applied to a control 
volume dx long by Y high. Using 5 as a dummy vari- 
able for Y, the result is as follows. 

au du, a y 
=“ay+U”dxY+Ux o 

s 
udS 

a y -- s ax 0 

U2d& (1) 

Now, as 

au 
y+6, -+o, 

aY 
u(x, Y) -+ u,(x) 

and equation (1) becomes, 

(2) 
Equation (2), is seen to be the von Karman x momen- 
tum integral equation. 
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NOMENCLATURE 

aj Profile parameters defined by equation X space coordinate along the body 
(4) X x/L, nondimensional x coordinate 

c constant used in some velocity profiles Y space coordinate perpendicular to 
cr = 2z,/pu: local skin friction coefficient body surface 
9 constant defined in equation (7) Y y/L, nondimensional y coordinate. 
j an index 
L reference length 
m,n constants used as a power in some 

velocity profiles Greek symbols 
N number of terms used in an 6 local boundary layer thickness 

approximating sequence 0 local momentum thickness 
ReL u,L/v, a Reynolds number 0 dummy variable 
Re, u,x/u local length Reynolds number V kinematic viscosity 
u, uo, u, local x component, maximum or 5 dummy variable 

reference, and freestream velocities, P mass density 
respectively rw local wall shear stress. 

The usual single parameter integral approach is to because the actual separation condition, that 
au/ay = 0 at y = 0 and at x,, is formed from equation 
(2), not from a direct differentiation of the sequence 
for u. 

insert an approximating sequence for u(x, 5) into 
equation (2) and solve for 6(x). Note that in doing 
this, the approximating sequence must be directly 
differentiated with respect to 5 in the term on the left 
side of equation (2). Conceivably, the direct derivative 
of an approximating sequence could have a much 
greater error than exhibited by the sequence itself, so 
the suggestion given by Volkov [l] will be used. Thus, 
equation (2) will be used to find the needed derivative 
on the left by evaluating the terms on the right once 
6(x) has been found. The parameter, 6(x), is found 
from a separate equation, the modified or double inte- 
gral equation, arrived at by integrating equation (1) 
with respect toy across the boundary layer thickness. 
The increase in accuracy of predicted results, when 
using this technique instead of the usual integral 
method, can be seen for a variety of flow and con- 
vective heat transfer problems in the works of Zien 
[4], [5] and Sucec [6]. The procedure just described 
gives the double integral equation shown next. 

_ [ (&[oyu2dt)dy. c3) 

During the construction and testing of a polynomial 
approximating sequence for the velocity, u(x, y), to be 
used to solve equation (3) for 6(x), it was found that 
a critical requirement, for very accurate separation 
prediction, was that (&/8y),,, = 0 for all x. This con- 
dition is needed to force the approximate velocity 
profile as close to a separation profile as possible. The 
use of the double integral method allows this latitude 

The approximating sequence is shown next. 

U(&Y) = , f, aj(X)Y'. (4) 

The coefficient functions aj(x) are found in terms of 
S(x) by use of this &jay requirement, boundary con- 
ditions and other conditions derivable from the partial 
differential x momentum equation at y = 0 and y = 6. 

au 3 

y=O u,~ ande=O 
aY3 

y = 6 u = u,(x) 
au ah 
- = - = 0. 
ay ay2 

Applying the conditions, equation (5), to the profile, 
equation (4), yields the following one parameter, 6(x), 
approximating sequence. 

(6) 
It is to be noted that equation (6) was not forced to 

satisfy the condition that a2u/ay2 = - (1 /v)u,du,/dx at 
y = 0, a compatibility condition that is satisfied by 
virtually all approximate velocity profiles used in sin- 
gle parameter integral methods for separation predic- 
tion. However, this condition complicates the solution 
for 6(x) in that a finite difference solution of the 
differential equation becomes necessary. Since the 
work being presented here involves the development 
of a simple, easily used method, the second derivative 
condition at y = 0 was purposely avoided to allow an 
analytical solution for 6(x). This is another example of 
the additional flexibility given by the double integral 
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method, along with the previously mentioned ability 
to set au/@ = 0 at y = 0 for all x and still be able to 
solve for the actual location of separation, at x,. 

Substitution of the approximate velocity profile, 
equation (6), into equation (3) and defining z = 6’ 
gives a linear first order differential equation for z. 

Solving by the integrating factor method yields the 
general solution for 6(x). 

(7) 

At the separation point (au/at), = 0 = 0. Using this on 
the left-hand side of equation (2), inserting equation 
(6) and (7) into the right-hand side and performing 
the operations gives the following general separation 
condition. 

-44891 du, u!(x) ~__= 
9030 dx 

s 

X 
atx = x,. (8) 

u:-‘(a) da 
0 

This simple laminar separation relation, equation (8) 
is one of the main results of the present work. 

Effective velocity projle for the method 
The fact that th.e double integral method, which is 

being used here, does not directly differentiate the 
approximating sequence for the velocity allows the 
use of very simple approximate profiles while at the 
same time yielding the boundary derivative very accu- 
rately (see Zien [4], [5] and Sucec [6].) However, the 
method also seems to define an effective, underlying 
higher order velocity profile, better than equation (6), 
which it is using. Consider equation (1) and solve it 
for aMjay, giving : 

u, du, u a 
s 

y 
ud5 

0 

+; $ 
s 

‘u’d<. (9) 
0 

Next, integrate equation (9) with respect to y, using 
equation (6) for u in the integrals and finding (&/a[), = 0 
from equation (2). When all the integrations and other 
operations are performed, one arrives at the following 
expression for u after replacing y/6 by rl 

(10) 

It is seen that equation (10) is the velocity profile 
which, when directly differentiated with respect to y 
gives the same result, namely equation (9), as is yielded 
by the double integral method when it employs the 
much simpler velocity profile, equation (6). As is 
evident, equation (10) contains powers of y from 1 
to 12 and also has the parameter (6’/v)du,/dx in it. 
Actually, it can be shown that the velocity profile 
given by equation (10) satisfies the compatibility con- 
dition at the wall mentioned earlier, namely that 
a’u/ay* = -(U&I) du,/dx at y = 0. On the other hand, 
the original velocity profile, equation (6), is a lower 
order profile than is equation (10) and does not satisfy 
the conditions just mentioned. Equation (6) was used 
in the operations that yield equation (10). Thus, it is 
argued that equation (lo), not equation (6) is the 
underlying, effective velocity profile used by the 
method since the differentiation of equation (10) gives 
the derivative, &jay, that is actually used by the dou- 
ble integral method. This also suggests that the reason 
for the double integral method performing so much 
better than the standard integral method, as is dem- 
onstrated in Zien, [4], [5] and Sucec [6], when both 
methods use the same approximating sequence, is due 
to the velocity profile being the effective profile just 
discussed rather than the original lower order 
sequence. This is perhaps most easily seen when very 
low order approximating sequences are employed, 
such as the linear profiles used in Zien, [4], [5]. 
However, these simple linear profiles in the double 
integral method lead to higher order effective profiles 
(as equation (6) leads to the effective equation (10) in 
the present work) which should be used to portray 
the variation of the dependent variables across the 
boundary layer. 

To illustrate that the higher order effective velocity 
profile of the double integral method, (equation (10) 
of this work) rather than the simple approximating 
sequence (equation (6) of this work), should be used if 
one wishes to predict the detailed velocity distribution 
across the boundary layer, we consider the flow near 
a stagnation point of a cylinder. Here, u,(x) = CX is 
inserted into equation (7) to solve for 6. With this, the 
effective velocity profile is given by equation (lo), 
while the simpler profile used to develop the 
expression for 6(x) is equation (6). In Fig. 1, u/u,(x) 
is plotted vs y/6 as a solid line for equation (10) and 
as a dashed curve for equation (6). Also plotted there 
is the exact similarity solution from White [ 141. The 
effective “edge” of the boundary layer was taken at 
u/u,(x) = 0.99 which occurs when the similarity vari- 
able used in [14] has a value of 2.4. It is seen that 
the effective velocity profile given by equation (10) 
represents the exact velocity profile very well through- 
out most of the boundary layer, while equation (6) is 
an extremely poor representation of the true velocity 
profile. Certainly, the error involved in using equation 
(6) is not unexpected since it was deliberately chosen 
to be a separation profile and it is being used here far 
upstream of the separation point on the cylinder. Yet, 
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Fig. 1. Comparison of predicted velocity profiles from equa- 
tion (10) and from equation (6) to the exact result for 

u,(x) = CX. 

at the same time, the underlying effective velocity pro- 
file implied by the double integral method, equation 
(lo), does a good job of predicting the true velocity 
profile even here at the stagnation point. However, 
right at the separation point equations (10) and (6) 
give virtually the same velocity profile. 

RESULTS AND DISCUSSION 

Table 1 compares the separation point locations 
predicted by the present method to the accepted or 
“exact” values for sixteen different free stream velocit- 
ies, U,(X). These accepted or exact values are mostly 
from finite difference solutions of the boundary layer 
equations or from methods supported by finite differ- 
ence results. This table includes the classic free stream 
velocity variations which lead to separation such as 
the linear retarded flow, case 1, the flows of Curle, 
cases 3-5, the Tani flows 12-14 and the Gortler flows, 

610. The exact values of separation location are 
taken, for the most part, from White [14]. However, 
cases 3 and 5 come from Curle [8], the Hiemenz flow, 
case 11, is from Smith and Clutter [12] and case 15 is 
from Abbott and Bethel [lo]. 

The predictions of the present double integral 
method shown in Table 1 seem very satisfactory. The 
predicted values of separation location, the first fifteen 
cases, have an average error magnitude of 1.5% and 
an RMS error of 1.9%. Next, a couple of the cases of 
special interest or note will be discussed in more detail. 

Case 1 of Table 1, the linearly retarded flow, is a 
classic test case for separation prediction techniques. 
Equation (8) of the present method predicts an x, 
value which is less than 0.4% lower than the exact 
value. For this case, Howarth, [ 111, has used his series 
technique to predict the velocity distribution across 
the layer at the separation point. The curves at the 
right in Fig. 2 compare Howarth’s predictions, the 
dashed curve, to the predicted effective velocity profile 
of the present work, namely, equation (10) plotted as 
the solid curve. Agreement between the two pre- 
dictions is seen to be very good. 

The last case in Table 1, the similarity separating 
flow, is an interesting and challenging one. This power 
law free stream velocity profile causes incipient sep- 
aration for all x when the power m = - 0.0904, Curle 
[8]. The well known method associated with Stratford 
fails to yield any solution at all for a value of m which 
causes separation. When Abbott and Bethel [lo] used 
their multiparameter integral method on the strongly 
retarded power law flow with a value of m = - 0.0876, 
not quite a separating similarity flow, they were unable 
to calculate shear stress, using the order of the 
approximation deemed necessary, because of excess- 
ive computer time. Presumably this indicates that their 
method may not be able to predict the value of m 
needed to cause separation. Surprisingly, even the 

Table 1. Comparison of predictions of present work with the “exact” separation point 
locations for different free stream velocity variations 

Case n,(X)/u, X at separation Error* 
“Exact” Present work WI 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 

12 
13 
14 
15 
16 

1-x 
sin X 

X-X’ +0.07885X5 
X-X-’ 

X-X3-0.12156x5 
(1 -X)“Z 
(1 -X)2 

(1 +X)-l 
(‘,‘,~~-2 

1.814X-0.271X3 
-0.0471x5 

l-X2 
l-X4 
1-F 
1-X’ 
CXm 

0.119863 0.119445 0.35 
1.823 1.80411 1.04 
0.6647 0.6678 0.47 
0.655 0.6499 0.78 
0.6245 0.6277 0.51 
0.21819 0.21550 1.23 
0.06368 0.06312 0.88 
0.15111 0.15184 0.48 
0.07130 0.07114 0.22 
0.38881 0.3786 2.62 

80” 78.8” 1.5 

0.27215 0.26489 2.67 
0.46271 0.4471 3.37 
0.64122 0.6204 3.24 
0.38234 0.3701 3.2 

-0.0904 = 172 - 0.09346 = m 3.4 

*Absolute value of error. 
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improved version of Thwaites method, Curle and 
Skan [ 131, which uses an underlying velocity profile 
based partly on similarity solutions, has some diffi- 
culty with this case of similarity separating flow. It 
predicts m = -0l0, for separation, a result which is 
10.6% in error. The present double integral method 
predicts separation at m = -0.0935, or an error of 
3.4% 

Another separation case was studied which is not 
shown in Table ‘I. Schubauer, [15], experimentally 
detected flow separation at X = 1.99 f0.02 on an 
elliptic cylinder. However, when equation (8) was used 
with the measured free stream velocity variation, no 
separation was pxedicted. The calculations did indi- 
cate that the boundary layer was close to separation 
at the measured ioNcation, the same conclusion reached 
in the finite difference solution for this case by Smith 
and Clutter [12]. Schubauer [15] had also measured 
the velocity profile across the boundary layer at 
X = 1.946, just upstream of separation. These exper- 
imental data points are shown as circles on the left 
side of Fig. 2. The solid curve represents the effective 
velocity profile prsediction, equation (IO), of the pre- 
sent double integral method. It is seen that the pre- 
dicted profile agrees well with the data for this near 
separation condition. If equation (6) were used to 
represent the velocity profile at this near separation 
condition, it is found that the velocity at all six data 
points closest to the wall is underpredicted as a conse- 
quence of the zero velocity gradient at the wall given 

by this separation profile, equation (6). Though the 
present case is less severe, this difference between the 
effective velocity profile, equation (lo), and the orig- 
inal approximate velocity profile, equation (6), was 
shown earlier in Fig. 1 and the associated discussion. 

Comparison to common separation prediction metho& 
In comparing average or RMS % error of the pre- 

sent method to the other easily applied methods, 
namely those of Thwaites and of Stratford, it would 
be well to remember that the original form of these 
two methods has undergone an adjustment or a fitting 
process by Curle and Skan [13] to enable the pre- 
dictions to more nearly match, on the average, the 
accepted exact values of separation location. The 
adjustments made by Curle and Skan [13] to the 
method of Thwaites reduce the magnitude of its aver- 
age error from 4% in the original method to 2.4% for 
the ten cases used there. In changing the value of a 
constant originally recommended by Stratford, for 
general application of his method, as 0.0076 (Curle 
[8]) to the currently used value of 0.0104, Curle and 
Skan [13] reduce the average magnitude of the error 
from 7.9 to 1.2% for the nine cases they considered. 
The present double integral method has an average 
magnitude error of 1.6% for these same cases without 
any adjustment or tuning of the constants in equation 
(8). Additionally, the present method gives velocity 
profiles at and very near separation. 

Lastly, the question of using the present method to 

1.2 

1.0 

0.8 

x = 1.946 
0 Date, Schubauer (1935) 

- Present Prediction 

1.0 

0.9 

0.8 

0.7 

0.8 

0.5 

0.4 

z%J (X) =24/J (1-X) 

- Preeent Prediction 
- - - Howarth (1938) 

o I 2 3 4 5 6 7 8 9 10 

1 2 3 4 5 6 7 

YVK 
Fig. 2. Comparison of predicted boundary layer velocity profiles, from equation (lo), to Schubauer’s [15] 

data and to Howarth’s [l I] result. 
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X 
Fig. 3. Predicted skin friction compared to finite difference 

predictions for u,(X) = u,( 1 - X) 

predict skin friction along the surface, before sep- 
aration is reached, will be discussed. It is well known 
that the double integral method, using very low order 
approximating sequences, can accurately give skin 
friction away from the separation point, Zien, [4], 
[16]. However, this is not recommended for the pre- 
sent work which should be used only to predict the 
separation location and details of the velocity dis- 
tribution across the boundary layer at and near sep- 
aration. In the present work, the condition that 
&jay = 0 at y = 0 for all x in the approximating 
sequence, equation (6), was found to be critical for 
accurate prediction of the separation point. But this 
same condition seems to cause inaccurate calculation 
of T,(X) along the surface. Additionally, the present 
method does not exhibit a singularity at separation, 
that is, dr,/dx -+ - co, (Brown and Stewartson [17]) 
and it is felt that this is also part of the reason for 
the lack of accuracy in shear stress prediction. As an 
example of this lack of accuracy, the skin friction 
coefficient along the surface for the linearly retarded 
flow, u,(x) = u,(l -x), was calculated using the pre- 
sent method. This is shown as a solid line in Fig. 3 
along with the finite difference results of Smith and 
Clutter, [12], the dashed curve. As is evident, the pre- 
dicted Cr/2 by the method is poor in spite of the fact 
that it predicts the separation point within 0.4% (see 
Table 1). Also apparent is the more gradual approach 
of C, to zero than in the finite difference solution 
of Smith and Clutter [12]. The explanation for this 
behavior has been suggested above. If, on the other 
hand, one uses as the velocity profile, u(x,y) = ug/b, 
as did Zien [4], in place of our separation profile, 
equation (6), the predicted C,(x) are quite good except 
near separation, but separation itself is predicted at 
x, = 0.142 instead of at the accepted location 
x, = 0.120, an error of 18%. 

CONCLUDING REMARKS 

A form of a modified, or double integral technique 
has been developed for the specific task of accurately 
predicting the separation point in laminar boundary 
layer flows. Agreement is seen to be very good when 
comparing predicted results with accepted separation 

point locations for sixteen different free stream 
velocities. 

The concept of the effective velocity profile being 
used by the double integral method is also established. 
Comparison of this effective velocity profile with 
experimental data just upstream of separation and 
with a series solution result at separation indicated 
good agreement between them. More generally, it was 
argued that this effective velocity profile across the 
boundary layer is much of the explanation for the 
ability of the double integral method to employ very 
low order approximating sequences, such as even a 
simple linear profile, and yet have very accurate pre- 
dictive capabilities in a wide range of problems in heat 
and mass transfer. 

Also demonstrated was the flexibility of the double 
integral method. The relatively low order approxi- 
mating sequences, accompanied by accurate deriva- 
tives of the dependent variable found without directly 
differentiating the original approximating sequences, 
allows the use of sequences specially designed for a 
certain type of problem and also the possibility of a 
simple, yet accurate, analytical solution. This flexi- 
bility, which was used in the present work, should also 
be able to be used to advantage in other problems as 
well, like aerodynamic heating of an insulated surface 
with flow near separation. 
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